
Implementing Collaboration Applications with an
Unconventional Software Architecture

Implementation approach using DART, Flutter & Firebase

FB IV

Master: Wirtschaftsinformatik

Name: Lionel Schroeder

Addresse: 46, rue de la Resistance

L-4942 Bascharage

Erster Betreuer: Prof. Dr. Peter Sturm

Zweiter Betreuer: Prof. Dr. Stephan Diehl

Matrikelnummer : 1494510

Abgabedatum : XX.XX.XXXX

Abstract

Education is a key to a successful life. Increasing the enjoyment of learning is a

difficult task that is constantly developing. How often does a teacher ask in his class

if a student has a question without getting a response from them? This can have a

simple reason, namely anxious students. Allowing anonymous questions during lectures

increases the student-teacher interaction during a lecture.

On the other hand, introducing gamification into lectures is more familiar with the

help of quizzes. These quizzes allow recapping previous lectures, which increases the

students’ grades significantly.

The Crayon applications merge both problems into a single application. These

applications use the newest flagship technologies from Google. One of them is called

Flutter, a framework that uses Dart as a programming language and is used to develop

multi-platform applications. The data consumed or created by Crayon must be stored

in a database. Therefore Google has a new database system called Firestore. Firestore

is a schemaless database that automatically propagates data changes to the listening

applications. Firebase’s automatic data propagation on changes increases the user

experience of applications.

1

Acknowledgements

First, I want to thank the University of Trier to teach me advanced information

technology skills to circumvent the challenges of developing the Crayon applications.

Especially Prof. Dr. Peter Sturm to allow me to write my own education application

and giving me feedback during the project/Master thesis.

2

Contents

1 Introduction 5

1.1 Motivations . 5

1.2 Objectives and Contributions . 6

2 Basics 7

2.1 Dart . 8

2.2 Flutter . 9

2.3 Environment . 12

3 Preliminary Analysis 14

3.1 Mockup & Requirements . 14

3.2 Data Modeling by Cost reduction . 19

3.3 Code Architecture . 23

3.4 State management . 25

4 Implementation 29

4.1 Packages & Folder Structure . 29

4.2 Advanced Provider implementation . 31

4.3 Theming & Translation . 32

4.4 Exception & Validation handling . 41

5 Results 49

5.1 Crayon student . 49

5.2 Crayon management . 51

5.3 Future Work . 53

6 Conclusion 54

3

List of Figures

1 Real Time Database Data format . 11

2 Firebase Model of a chats . 12

3 Project development process . 15

4 Sequence diagramm of a quiz process . 17

5 Sequence diagramm of a question process . 18

6 Model View Controller . 24

7 Crayon architecture . 25

8 Counter-app width Provider . 27

9 Crayon application folder structure . 31

10 Splash and Login Screen . 49

11 Dashboard . 50

12 Quiz screens . 51

13 Login & Dashboard . 52

14 Presentation & Drawing mode . 52

15 Start quiz . 53

List of Tables

1 Firebase pricing . 19

4

1 Introduction

1.1 Motivations

Increasing student grades and participation in courses is crucial in today’s educational system.

The majority of teachers ask in their lectures if students have questions. Most of the time,

there are no responses. There can be multiple reasons which can cause a student not to ask a

question over the course material. One of them can be that a student feels that their question

is not significant enough. Another possibility can be that the student is anxious to ask a

question. According to Perry Samson, an atmospheric science professor at the University of

Michigan, the questions asked during lectures increases tremendously if the students can ask

their questions anonymously [10]. In addition, he states that providing an anonymous way

of asking questions increases the interaction and understanding of the course material.

Moreover, students tend not to revise their previous lecture material. Students who

revise the material of the previous lecture have better grades than a student who does not,

according to Mehmet Akif Ersoy from the University of Turkey [2]. Increasing the motivation

of students to revise their old course material can be achieved with gamification. Gamification

adds game mechanics to an environment that does not have a gaming environment. Adding

gamification to lectures can be done by using quizzes. The book [9] states that there are

significant benefits of testing students. One of them is to test the students frequently, which

encourages them to study. Quizzes during lectures can be seen as a test and thus can solve

the problem of lousy student grades.

Kahoot is an application that gives the possibility to the teacher to start a quiz during the

lecture. Using such a quiz application requires the student to install an application that only

lets the user participate in quizzes. However, applications such as Kahoot have one major

drawback: they can only do one thing: creating/starting a quiz. Kahoot can only do the

quizzes. Messaging applications can be used for anonymous questions asking to the teacher

where each student also requires the same application. In addition, the teacher might require

an application to present his lecture slides. The number of applications required to increase

the learning benefits comes with costs for the teacher and the student.

The teacher must manage multiple applications and has to ”force” the students to use

multiple applications instead of one. Furthermore, students can have multiple teachers, and

each one of them can have other applications which allow creating quizzes or anonymous

question asking. Thus creating one application that merges these features can make life

easier for the student and the teacher.

5

1.2 Objectives and Contributions

The Crayon applications were developed to regroup working techniques in education into one

to improve the interactions and student grades. The Crayon applications are divided into

two parts, management and student application. Both applications were developed with the

Flutter Framework and are currently not a standard in the developing industry.

The teacher uses the management software, which is in charge of creating the content for

the student application. The content or data created by the management application must

be stored in a database. The database chosen is called Firebase and is currently one of the

most advanced databases in the world.

Using new technologies requires deep research of each technology. This research or analysis

allows one to find out the benefits and the pitfalls for each one of them. Finding out the

different pitfalls prevents them from occurring during the development process. Firebase has

one pitfall, namely cost. Traditionally data is normalised to reduce data redundancies which

is not the case in Firebase. Firebase data can be modelled to reduce the production cost,

which creates the field of data modelling by cost reduction. Moreover, Flutter applications

performance can be harmed significantly by not using state management techniques. These

techniques allow rebuilding only parts of the screen instead of the whole screen. Depending

on the screen content, this can lead to a slow application.

6

2 Basics

Developing software for different devices required application creators to know multiple pro-

gramming languages. The development world is subdivided into multiple development fields.

Web Pages have two main fields, namely front-end and back-end. Front-end describes the vi-

sual aspect of a web page; it requires the knowledge of at least three programming languages,

namely:

• HyperText Markup Language (HTML)

• Cascading Style Sheets (CSS)

• Javascript

If a web page only uses these three types, it is called a static webpage. A static web page is

a page that does not change its content. These types of web pages are commonly used for

small businesses.

More complex web pages use a back-end application to serve data to the front-end ap-

plication. The back-end application is used for data retrieval and might also be used for

heavy computational tasks to prevent the front-end application from slowing down. Back-

end applications can be written in multiple programming languages. The most common ones

are:

• Java

• Python

• Php

Thus, building a more complex web page requires building two applications. However, nowa-

days, developing only a webpage might not be enough. One example of this are email services

such as Gmail from the company Google. Google not only developed Gmail for web pages

but also for smartphones. According to GSMA intelligence [8], 66.5% of the global popula-

tion have smartphones. Thus developing a specific application for these devices increases the

customer base for Google and other companies. Smartphone applications benefit from being

faster since the visual aspect of the application is already stored on the device, thus allowing

faster operation. In addition, mobile applications can accept notifications from a back-end

application. Email service applications notify the user as soon as a new email is available.

Building mobile apps requires different programming languages depending on the device’s

operating system. An operating system manages computer hardware and software resources

and provides a service for computer programs.

7

The most used Operating Systems on smartphones are currently Android and iOS. Creat-

ing an application for those devices requires the developer to learn at least two programming

languages. IOS uses Swift, and Android uses Java or Katolin as a programming language.

Developing software for both operating systems is a requirement due to the extensive user

reach. Statcounter [13] states that the market share for Android devices is 63% and iOS

38.5% in Germany. Complex mobile applications also use a back-end application as in web

development.

2.1 Dart

Dart is an ECMA-standardised programming language and is mainly developed by Google.

ECMA standards for European Computer Manufacturers Association have a role in standar-

dising different technology fields. They set the standards for inter compatibility for different

web browsers.

Dart is a modern alternative to the JavaScript programming language. Dart code can

be used for both front-end and back-end applications. Currently, the main focus of Dart

is front-end applications. The coding style and syntax of Dart is similar to other Object-

Oriented Programming languages such as Java. Applying the same syntax, it is easier for

object-oriented programmers to use this new language.

Dart code is much faster than JavaScript due to both compilation approaches JIT and

AOT. JIT stands for Just-In-Time compiler and has one benefit it does not compile the

whole code ahead of time. This means that the startup process of a dart application can

significantly be increased by not compiling the complete code. On the other hand, AOT or

ahead of time compiler compiles the complete code, which gives a longer starting time but

increases the overall performance.

The Dart documentation states that Dart code is a type-safe programming language [3].

This means that Dart variables can have a type, but they do not have to. Furthermore,

Dart has a null safety feature, a great asset over other programming languages. The Dart

documentation explains the null safety feature as follows:

”For us, in the context of null safety, that means that if an expression has a static type

that does not permit null, then no possible execution of that expression can ever evaluate to

null. The language provides this guarantee mostly through static checks, but there can be

some runtime checks involved too [5] .”

Usually, developers who have a bug in their code try to search for the problem and find

out if another developer has already solved this issue. The higher the rate of developers for a

programming language is, the higher the chance of finding the solution to the developer’s bug.

Statista states in [14] that over 64% of the developers know/use the JavaScript programming

8

language, and Dart is only represented with 6%. This is due to the age of each programming

language. JavaScript has existed since 1995, which results in a vast developer pool. The

counterpart Dart was released in November 2013 and thus is a new programming language

and therefore has a smaller developer size. The smaller developer size makes running into

already solved problems less likely than in JavaScript. This makes the development process

of Dart application more complicated. However, the gains of the Dart programming language

are significant in terms of speeds of an application and for developing applications for multiple

devices concurrently.

2.2 Flutter

Firebase is Google’s ”All-In-One Backend Solution” for mobile and web applications. Fire-

base provides Software Development Kit (SDK) tools and infrastructure, allowing developers

to use efficient APIs to ease the development process. By using Firebase, the developer

cannot build a custom backend application for data retrieval. However, Firebase can only

be used on their devices and can not be downloaded for personal use. In other words, a

Firebase customer must use Google’s infrastructure. Not every company can buy servers

and know how to maintain them. In addition, a Firebase customer does not need to write

scalable backend code. As soon as Firebase detects that more processing power is required

for an application, Firebase automatically assigns more processing power to the applications

without the need of a developer. The key features from Firebase which will be used in the

Crayon applications are:

• Authentication

• Database

• Cloud Storage

• Scale

Authentication is one of the critical security issues of modern applications. Firebase pro-

vides a particular service for authentication purposes which is called Firebase Auth. Firebase

makes the security updates to maintain the highest security standards for users’ data. In

addition, there are multiple ways to authenticate with Firebase:

• Authentication

• Database

• Cloud Storage

9

• Scale

Phone number authentication allows an individual to authenticate with his phone number.

Firebase will send a verification code to the user’s phone, and in return, the user has to

enter the verification code to access the restricted content of the application. On the other

hand, email authentication is the most commonly used. Email authentication is usually

accompanied by a password. Emails are verified by sending an email to the registration

email with a specific activation link. This link needs to be opened by the user, and Firebase

automatically validates the email. Both processes allow verification to discard non-human

interaction with a given application. The final authentication method is the username with

a password that is currently dying out. This is due to the not available verification process

to check whether the user is a computer program or a human.

Firebase has two different database types for storing data. These two are Cloud Firestore

and Realtime Database. Both Cloud Firestore and Realtime Database are cloud-hosted

NoSQL databases. These NoSQL databases are specifically designed to create schemaless

databases. SQL databases have a predefined structure. In other words, they can be described

as tables. Thus, SQL databases require to be predefined by a data analyst or a developer.

NoSQL solves this issue by storing the data in a JavaScript Object Notation format which

acronym is JSON.

Realtime Database stores the JSON Objects in one big JSON object, which the develop-

ers can control in real-time. Figure 1, is an example of a big JSON file. Naturally, developers

would split up chat messages into multiple files to create a hierarchical data structure and ben-

efit from a better overview of the data. However, Realtime database does not allow another

structural format except for one big JSON object. Realtime database also gives the possi-

bility to listen to changes to the data in real-time. A major drawback of Realtime database

is that the queries are not shallow. For example, querying for a specific JSON object in the

big Json Object also returns all sub-objects of the searched object. This means that more

data can be requested from the database than needed. Moreover, Realtime database does

not allow querying over multiple fields, meaning the data needs to be denormalized, meaning

that a JSON object requires an additional field where the query needs to be performed.

10

Figure 1: Real Time Database Data format

On the other hand, Firestore, the newest product from Google, has more functionalities

than Realtime database. The data is not stored in one huge JSON object but in a more

structured approach. The data is subdivided into collections and documents. Documents

can have a maximum size of 1 MB. If the size is exceeded, the JSON object can not be stored.

Collections contain documents, and the documents contain data and can point to other sub-

collections. Figure 2, describes how the data can be structured in Firestore. The chat

collection contains all the chats documents. In this case, chat 1 and chat 2 are documents

that contain the different messaging information of two individuals. This additional data

structure allows Firestore to have an important advantage by performing queries. Firestore

queries are shallow, which allows the retrieval of a single document without retrieving any

other linked subcollections. Firestore does not need a denormalizing process of data as

the Realtime database counterpart and thus allows querying over multiple fields. However,

querying multiple fields in Firestore can not be done by default. Firestore, by default, indexes

each field to make querying for a specific document instantaneous. Composite indexing is

required to perform multiple fields querying, which the developer must set up in Firestore.

11

Figure 2: Firebase Model of a chats

2.3 Environment

The environment describes the different tools and versions of the source code used during the

development process. Both projects use the identical versions of Flutter, namely 2.5.3, the

most recent version at the start of development. Since Flutter uses Dart as a programming

language, the Dart version 2.14.4 was used. Visual Studio Code from Microsoft was used for

developing the code for both applications. Android Studio Code from IntelliJ was used to

download different virtual mobile devices. Having access to multiple devices allows testing

the application on different screen sizes. This can prevent bugs in the design of an application.

The editor Android Studio Code provides a simple way to download different Android

firmwares. These firmwares describe the different Android or iOS versions of a mobile phone.

Usually, everything should work on every device, no matter the version. However, an old

Android version might not have functionalities available to newer versions in some cases.

Therefore, it is required in Android to specify the minimal supported Android version. The

simplest way to have a working application is to make the minimal version the newest one.

12

However, the Crayon applications use 20 as a minimum for Android devices. This minimum

Android versions name was called KitKat and was added in 2014. Statcounter states that

the significant majority or 95%+ of Android users use a higher version than our minimum

version set [12].

The Android documentation from Google suggests that an application should at least

cover 90% of the devices [6] which the Crayon applications overreach significantly.

It is recommended to use a version control system during the development process. Ver-

sion control systems allow to track changes on source code and collaborate with other devel-

opers. GitHub is the most used version control system in software development. GitHub has

a repository which is a data structure used to store files or directories. Each upload/commit

from a developer gives a new version to the project. This allows downgrading to the older

version if the new code contains anomalies or bugs. Storing the project into a repository has

another vital asset: if a computer gets damaged, the code will still be available on GitHub,

and the current work will not be lost.

13

3 Preliminary Analysis

The preliminary analysis’s primary goal is to identify the core requirements for an application.

This analysis creates the blueprints of the software. The core components of the blueprints

are:

• Mockup

• Requirements

• Data

• Software architecture

• State management

Mockups visualise what the final application applications might look like. These mockups

can have a mid to high fidelity to the final product. The requirements are closely related to the

mockup since the requirements describe which core functionalities an application must-have.

In addition, the data must be known before developing the software. Knowing which data

is required before implementing the software allows designing the data in a certain way. For

example, to reduce query costs on Firestore. Finally, creating the software architecture allows

implementing different functionalities of an application the same way without reinventing the

wheel for each function. This architectural process is required to increase the manageability

and consistency of a programm. The Flutter framework, however requires additional analysis.

Proper Flutter applications have 60 frames per second. The frames per second describe how

fast an application updates the view. Flutter by default, rebuilds the whole screen each

time a value is updated, which decreases significantly the frames per second and harms

the performance of a Flutter application. State management thus introduces an essential

complexity that must be treated before the application is developed.

3.1 Mockup & Requirements

The requirements analysis describes what functionalities an application requires to be suc-

cessful. The iconic image 3 in information technology describes the process of the creation

of an application. This image shows the problems in developing an application. The client

usually knows what he wants but can not describe it adequately. On the other hand, the de-

veloper/engineer creates the software how he understands it. The client, in the end, did not

want what the engineer developed and explained in more detail what he wanted. Preventing

such errors can not be entirely omitted, but some can be prevented.

14

Figure 3: Project development process

Preventing mis-creating an application requires detailed documentation on what the ap-

plication should do. This documentation of the application’s functionalities allows the devel-

oper to play by a script and not implement what he wants but what the client wants. This

script gives the client reinsurance that he should get what he wants, and both sides have a

written version of what they agreed on in case of conflicts. The Crayon application is divided

into two separate applications. One application for the lecture giver and one which consumes

the content provided by the lecture giver. The lecture giver application is called Crayon

Management, and the student’s application is called Crayon. The management application

requires to have the following main functionalities:

• Lecture creation

• Presentation mode

• Questions

• Quizzes creation/start

A lecture giver must at least create one lecture before performing other critical func-

tionalities of the application. The presentation screen allows the teacher or lecture giver to

present his pdf slides. These pdfs have to be stored in the Firebase file system, allowing

access to the pdfs over the web on different devices. The question feature is available as

soon as a student asks a question in the student application. The system notifies the teacher

that a student asked a question. However, the teacher decides when the question should

be answered. The teacher also has the possibility of starting a quiz during his lecture. By

15

starting a quiz the student must automatically be notified that a quiz started for this specific

lecture. The student application must have the following key functionalities:

• Enroll

• Ask Questions

• Participate to quiz

The students must enrol into a lecture to participate in quizzes and ask questions. The

enrollment process must be done over a QR-code. A lecture id is a 24 digit long character

sequence and entering 24 digits to enrol in a lecture significantly harms the user experience.

Therefore, a more user-friendly way to enrol in a lecture is required. A QR-code is a perfect

solution for such a problem. As soon as the student is enrolled in such a lecture, he gains

access to the other features. The application must detect Real-time changes. For example,

if a lecture date or the room of a lecture changes, the user must see the changes in the

application. Finally, as soon as the teacher starts a quiz, the application must show that the

teacher started a quiz.

Illustration 4 shows the exact process of how to start a quiz. First of all, the teacher

requires to select a previously created quiz. Before a teacher can open a lobby that allows

the users to join the quiz session, the teacher must set how much time the quiz should take.

After setting up the time, the Crayon management application modifies the lecture document

in Firestore. This modification will automatically be propagated to the student’s application.

The student application processes this new information and displays that a student can join

the new quiz session. Therefore a pop-up is opened, and the student can enter a username.

This username gets sent back over Firestore to the Crayon management application and

displays the student’s username. As soon as the teacher starts the quiz, the quiz information

with the quiz’s time will be sent to the student application. The student application will

automatically open the quiz mode, and the student has to answer the quiz’s questions. After

the quiz is completed, the student application will automatically send the responses to the

management application over Firestore. The teacher can move to the quiz responses screen

if he decides to do so or if the quiz time elapses. The teacher can respond to each question

individually and see the students’ responses on this screen.

16

Figure 4: Sequence diagramm of a quiz process

The second key is allowing a student to ask anonymous questions, which is described in

5. The teacher requires to be on the presentation screen to see the questions asked by the

student. However, the system still stores the questions from the students even if the teacher

is not on the presentation screen. In step three, the student asks his question, which gets sent

to Firestore. Firestore notifies the management system that the student asked a question.

As soon as the teacher retrieves the questions manually, a deletion request of the question or

questions will be sent to Firestore.

17

Figure 5: Sequence diagramm of a question process

Mockups can further decrease a mis-implementation of an application. The mockup is

usually not created by the developer but by a UI/UX expert who decides how the application

looks and feels. Mockups allow the developer to implement the application as it states

on these images provided by the UI expert. The mockups of the different screens of an

application should include:

• Content Layout

• Color Scheme

• Typography

• Spacing

• Navigation visuals

Content layouts relate to how the content should be displayed. These layouts can be, for

example, a table. The colour scheme states which colour or shades should be used over the

whole application. The main objective of this process is to keep one primary colour over the

whole application. The typography states which font style should be used and at which size

the different text paragraphs should be. The spacing aspect describes that a given content

should not overlay another and should not seem cluttered. Navigation in an application is a

crucial component that allows seeing other application contents. Thus emphasising how to

navigate through the application makes the application more user friendly.

Mockups can be created in multiple applications available online. The state-of-the-art

application for mockups is called Figma. Figma has a lot of built-in functionalities to go

beyond of just creating pictures. Figma allows creating ”proto-types”, which creates anima-

tions for navigating between screens. Small functions can be included to display dialogues

18

and more. Creating advanced mockups as it is possible in Figma allows showing a given

person or the contract giver of an application to see how the final application will look and

which functionalities the application will have.

3.2 Data Modeling by Cost reduction

The Firebase Database system is an efficient database, but it costs. From the table 1, the

different CRUD operations such as reading, writing and deleting a document have different

pricing ranges. Reading is free up to 50.000 documents per day, and writing or deleting

is free for 20.000 documents per day. If the application has a higher consumption, the

administrator/application owner must pay for additional reading or/and writing operations

tranches. Thus, adding additional document reads (50.000) will cost 0.06 $ and afterwards

100.000 for each extra tranche. The writing to documents is three times higher than document

reads. Finally, the cheapest operation is deleting files which only costs 0.02$. Preventing

unnecessary requests to the Firestore thus must be included in the data modelling process

for both applications to reduce unnecessary costs.

Operation Free quota per day Price beyonthe free quota Price unit

Document reads 50,000 $0.06 per 100,000 docs

Document writes 20,000 $0.18 per 100,000 docs

Document deletes 20,000 $0.02 per 100,000 docs

Table 1: Firebase pricing

Both applications require authentication. The authentication process creates a unique

identifier for the newly registered user. This unique identifier allows the storage of additional

information for only that specific user. There are several ways to implement an authentication

process. First of all, phone numbers are increasingly used in modern-day applications. It is

easier for the user since he does not need to remember a password. A password study was

conducted by HYPR, which states that 78% of people had to reset a password they forgot in

the past 90 days [7]. Phone authentication would allow a majority of users not to remember

a password. The European Data Protection supervisor states in [15] that an application

should only store required personal data. Phone Numbers do not add any benefit for the

user except that they forget their passwords. Both crayon applications thus require an email

and a password to be stored in Firebase. Only persons who use the management application

must add a first name and last name. The final data model in JSON format is stated in 1.

A lecture can be given on multiple dates, have specific types, have a title and have a

teacher. The dates describe when a course starts and ends and on which day of the week

19

{

"UID": "Unique_ID",

"firstName": "Nicolas",

"lastName": "Tesla",

"email": "nicola_tesla@edu.com",

"password": "ElonUsesMyTeck13"

}

Listing 1: JSON model for Registration in the Management app

the lecture occurs. Lectures have a specific day in the week and time when they happen. In

addition, lectures can have three distinct types of lecture:

• Exercise (Practice session)

• Lecture (Theoretical session)

• Other

There are two solutions to store lectures with their respective type and occurrence. The less

powerful method would be to store the lectures by type and day of occurrence into different

documents. This would increase the requests to Firestore and thus increase the price for

retrieving the lectures. Another more favourable possibility is storing the lecture and their

different types into the same file to prevent unnecessary Firebase charges.

The applications allows to create/join quizzes. Quizzes are connected to a specific lecture,

allowing only to show the quizzes relevant to a specific lecture. A lecture can have multiple

quizzes and are not directly added into the lecture document. The student Crayon application

does not require knowing every quiz available, only the one the teacher started. Adding the

quizzes into another document is thus a preferred way of storing the quizzes. A quiz has a

title and can contain multiple questions which can have multiple responses. A response is

completed by a Boolean value that describes if a response is correct or a wrong answer. The

data model of a quiz can be seen in 2.

As soon as a teacher starts a quiz for a specific lecture, the document with the lecture

information is modified by adding the selected quiz data to the lecture document. This

approach allows the student application to only listen to one document change instead of

multiple.

Moreover, a lecture requires slides for presentation purposes which are stored on the

Firebase file system. Accessing these files over the web can only be achieved with their

respective URLs, which are required to be stored in the lecture document.

20

{

"id": "Unique_QUIZ_ID",

"title": "Quiz_TITLE",

"questions": [

{

"question_ID": "Unique_ID",

"title": "Question 1",

"responses": [

{

"response": "Response 1",

"is_Response": true

},

{

"response": "Response 2",

"is_Response": false

}

]

}

]

}

Listing 2: JSON example of a quiz

21

The teachers profile document must also include the lectures he created. There are two

ways of solving these issues. The first way is to query each lecture document and check if

the PID match the teacher’s id. This is a valid method and the most common approach.

However, the Crayon applications use a custom snippets method. This method reduces

significantly document reads requests to Firebase. Currently, ten read requests are performed

if the teacher gives ten courses. The new method will drop the value to two document read

requests and does not depend on the number of courses the teacher gives. The teacher’s

profile gets small portions of the lecture stored in his document. These small portions only

include the name and the dates of a the lectures he created. After, if the teacher requires

more lecture information, he can request more data from the actual lecture document.

The snipped method also has one minor drawback: when a lecture requires to be updated.

For example, if the teacher changes the classroom of a lecture, the snipped in the teacher’s

profile also requires to be changed and thus resulting in two document writes instead of one.

On the other hand, the student Crayon application does not create additional data except

for questions and responses to a quiz. The students profile document does not use the snipped

method since the students must have real-time updates of the data of a course. This is

required since the application needs to detect if a course has an available quiz or if a lecture

room has changed.

Asking questions is a simple string added to the questions document of a lecture. The

response of a quiz by the user contains the strings of the question and if the question was

rightfully answered or not. In addition, a score variable is added, which describes if the

student performed good or bad in the quiz. The final data model of the student’s responses

can be seen in 3.

22

{

"responses": [

{

"userName": "Flying_Car",

"UID": "Unique_ID",

"responses": [

{

"question_ID": "QID",

"time_taken": "10s",

"was_timed_out": "false",

"response": "(a): Response 1"

}

]

}

]

}

Listing 3: JSON example of students response to a quiz

3.3 Code Architecture

Designing software is one of the most complex tasks in creating software. Lousy software

design increases code redundancies and make an application harder to maintain. Software

maintenance is the process of modifying the code after deployment. A common misconception

is that software maintenance only occurs for corrective purposes. However, maintenance also

includes:

• Perfective

• Adaptive

• Preventive

Preventive changes to the software include updates on the code documentation and code

optimisation. Preventive thus allows the software to become more stable, scalable and un-

derstandable. Adaptive change happens if the operating system or the hardware where the

software runs on changes. Perfective changes are improvements in features for the software.

Frontend frameworks typically force the developer into a specific architecture. For exam-

ple, Angular uses the MVC or Model View Controller design Pattern, which Trygve Reen-

skaug developed. Figure 6 shows how the MVC design pattern can be described. The model

23

is in charge of storing and managing data. This is often a database. The view is the Graphi-

cal user interface, also known as GUI, which the users see. Finally, the controller is the brain

of the application. The controller’s goal is to convert the input from the user from the view

and, depending on the action from the user, update the GUI or requests more data from the

model. A Major benefit of using such an architecture is the separation of concerns.

Figure 6: Model View Controller

The Flutter framework gives a lot more flexibility to the developer on what design pattern

to use or even completely omit of using one. By not forcing the developer into a specific

design criteria, each Flutter project can be written differently. Both Crayon applications

code architecture have a close relation to the old but gold MVC design pattern. Illustration

7 shows the custom architecture of both Crayon applications for each screen.

24

Figure 7: Crayon architecture

The view describes the user interface as in the MVC design pattern. The view contains

the different widgets which describe the screen. The view does not contain any functional

tasks. The view contains a widget which is called provider. The provider is in charge of the

logic in the application and manages the states of the widgets by deciding which widget to

rebuild if a widget changes. The provider can be seen as a controller however, he is also in

charge of passing data to other widgets and can access the service layer for outside requests.

The outside requests for the Crayon applications are operations on Firebase. The provider is

a State management solution that Google recommends to increase the overall performance

of a Flutter application.

3.4 State management

There is one proper way of implementing the provider state management solution in Flutter.

The first solution uses widgets which are called Provider and Consumer. The Provider’s

objective is to make the Provider himself available to all children widgets on the same

route/screen. The Provider widgets can only be accessed within the same route except

25

if they are declared at the App starting level. If a screen requires multiple providers, the

widget MultiProvider can be used. The consumer widget is used to consume the data from

the Provider, and if the data changes, the Provider can also notify the consumer that the

data has changed.

The counter-app provided by Flutter is inefficient because the whole widget tree will

be rebuilt as soon as the counter value changes. The illustration 8 with the title Provider

1 shows a wrong implementation of the Provider. The Provider widget was added and

wraps the MyHomePage widget. In addition, the counter variable was moved outside the

MyHomePageWidget to the Provider widget. The Provider itself shares the counter value to

all the child widgets. Thus, the button and the text widget now have access to the counter

value. However, as soon as the counter is incremented, all the sub widgets are rebuilt and

cause inefficiencies since only the Text Widget needs to be rebuilt. This inefficiency can be

countered by using the consumer widget, as shown in Provider 2. The Consumer widgets

retrieve the Provider’s data and give the counter value to the text widget. Moreover, as soon

as the counter is incremented, the Provider can notify the consumer that the counter value

has changed. The notification of a change has to be managed by the developer.

Coding a provider which allows notifying consumers of data changes requires extending the

base class ChangeNotifier, which can be observed in the code 4. This allows the Provider to

notify the respective consumers with the newly available function notifyListeners. A provider

requires a registration, usually at the start of the screen where the Provider is needed. If a

provider is accessed from another screen, it will return an error due to different build contexts.

The code in 5 describes a registration of a provider. However, the widget MultiProvider is

used instead of the normal Provider widget. This Multiprovider widget adds better flexibility

by providing a solution to add multiple single providers instead of nesting them. In addition,

the StateCounterProvider is initialised with the Provider ChangeNotifierProvider.

To preview the necessity of applying a state management solution compared to no state

management solution can bee seen in the following video 1.

1Link to the State management Video https://github.com/SchroederLionel/CrayonVideos/blob/

main/2022-02-08%2016-50-09.mp4.

26

https://github.com/SchroederLionel/CrayonVideos/blob/main/2022-02-08%2016-50-09.mp4
https://github.com/SchroederLionel/CrayonVideos/blob/main/2022-02-08%2016-50-09.mp4

Figure 8: Counter-app width Provider

class StateCounterProvider extends ChangeNotifier {

int count = 0;

int get getCount => count;

incrementCount(){

count++;

// Notify consumers

notifyListeners();

}

}

Listing 4: Counter provider with change notification

27

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MultiProvider(

providers: [

ChangeNotifierProvider(

builder: (_) => StateCounterProvider(),

)

],

child: MaterialApp(

home: MyHomePage(title: "Flutter Counter Page"),

));

}

}

Listing 5: Counter provider with change notification

28

4 Implementation

The Crayon applications have a high standard of code. These standards not only include

state management but also include improved error handling. Each subsection describes how

the Crayon applications go beyond the usual way of implementing Dart code.

4.1 Packages & Folder Structure

Packages are features that are not by default available in Flutter. The definition of packages,

according to the Flutter-docs, state the following:

“shared packages contributed by other developers to the Flutter and Dart ecosystems” [4].

This means that every developer can add extensions to the Flutter/Dart ecosystem. This

can include poorly developed packages. A badly developed package might consist of no docu-

mentation, or not every platform is supported. In addition, packages can also be out of date.

Flutter 2.0 introduced a null safety feature in march 2021. The null safety feature improves

the developer’s productivity by eliminating the whole range of exceptions of accessing null

values. Null values which do not contain any data and cause an error by accessing them. To

improve the code base, both applications use this breakthrough feature. By allowing Null

safety in both applications, old code bases are not compatible anymore. The drawback of

requiring the new safety feature means that old code bases will not work anymore. On the

other hand, the benefit is that there is no mismatch between different code versions. More-

over, the applications cannot be automatically updated if the package gets updated to the

new Flutter version with new features or bug fixes. Adding packages to a Flutter project

requires only adding the package name to the pubspec.yaml file. The pubspec file speci-

fies the project’s dependencies and the project name with a respective description. These

dependencies include:

• Font styles

• Images

• Language files

• Packages

A proper folder structure is required to maximise the visibility of the different components

of the applications to other developers. Illustration 9 a shows the general folder structure of

the Crayon applications. The data models folder contains the entities the application uses.

29

firebase_core: ^1.7.0

firebase_auth: ^3.1.3

cloud_firestore: ^2.5.3

firebase_storage: ^10.0.5

cupertino_icons: ^1.0.2

provider: ^6.0.1

shared_preferences: ^2.0.8

validators: ^3.0.0

dartz: ^0.10.0

qr_code_scanner: ^0.6.1

connectivity: ^3.0.6

Listing 6: Packages used in the Crayon applications

The l10n is in information technology, often referred to as internationalising. The interna-

tionalising folder contains the files which are required to perform translations. The provider

folder contains the overall providers of the applications. The route folder includes the routing

information or, in other terms, the navigation of the application. The screens folder contains

the view of the different screen widgets of the applications. The service folder contains the

logic for outside requests to Firebase. The state folder contains information on which state

a given provider currently is. More information will be available in the following subsection.

The widgets folder contains reusable widgets. Widgets that are used multiple times can be

found under this folder. Image 9 b displays which widgets are commonly reused in the ap-

plication. To give an example, the Loading widget will be used every time an operation is

performed on the database. Using such a widgets folder makes it easier for other developers

to see reusable widgets. Changing the design of one of these widgets will propagate to the

complete application instead of multiple times.

30

Figure 9: Crayon application folder structure

4.2 Advanced Provider implementation

The Crayon applications use a more advanced provider implementation strategy. One addi-

tion to the provider is the states. States describe in which situation the provider currently is.

The visual updates in both applications are mostly done due to operations on Firestore. An

example of such an operation can be retrieving lectures from Firestore. Outside operations

from the application require some time to be executed. Functions that require time must be

shown to the user with a loading widget. The loading state is, therefore, the first addition

to the provider. On completion of the time-sensitive function, the final loaded widget should

be displayed, and the provider should swap to the loaded state. Increasing the initial built

speed of a screen can be done with low budget widgets. These widgets are Containers or

Sizedboxes. Placing an initial widget that requires less computation time than a widget that

requires data from Firebase prevents one significant error. This error occurs when the initial

built function of a screen is interrupted. This interruption occurs when the widget which

requires outside data calls the setstate or notifyListeners function from the provider before

the initial built function was completed. This can happen when the data request is faster

than the initial build. This leads the advanced provider to his final state, namely the initial

state. The three primary states a provider can be coded as enumeration as shown in 7.

enum NotifierState { initial, loading, loaded }

Listing 7: Possible provider states

The complete implementation of an advanced Provider for the retrieval of a specific lecture

31

is shown in 8. The requirement to extend ChangeNotifier is still required to notify the

consumer widget. The state variable displays in which state the provider is currently in.

Each advanced provider should be in the initial state to benefit from a fast initial build and

must prevent the interruption of the built function. The setState function changes the state

of the provider and notifies the consumer. The lecture variable is in charge of storing the

retrieved lecture from Firebase with the function getLecture. As soon as the provider requests

the specific lecture, the getLecture method gets called. The first step of the function is to

change the provider’s state with the loading state. Afterwards, the LectureService gets called

to retrieve the specific lecture. As soon as the course is retrieved, the state gets changed to

loaded, and the lecture gets set.

The usage of the advanced provider over the Consumer widget can be seen in 9. More-

over, the code contains an initstate function. This initstate function is fired first before

and after the built function, even if the initstate function is not completed. The initstate

function contains a function named addPostFrameCallback, which allows the execution of

the inner function after the initial build. By not using the addPostFrameCallback function,

the provider would change the state before the built function of the screen has completed

execution. Thus, the request to the Firebase will initially be postponed until the initial build

is completed.

On the other hand, the Consumer widget checks which state the provider currently is with

the respective if and else statements. At the start of the screen, the provider is instantiated

with the initial state, and thus, an empty Container will be returned. After the first built

completion, the Lecture request from the inner function of the addPostFrameCallback method

will be executed. This changes the state of the provider directly to loading. The Consumer

widgets gets notified by the state change and returns the loading state. Upon completing

the request, the state is changed into the loaded state, and the Consumer widget returns the

LectureWidget.

4.3 Theming & Translation

Theming and translations in applications are crucial to increase the applications’ user ex-

perience. Students and teachers can speak multiple languages, and a good application can

handle multiple languages. Theming describes in which mode the application should be dis-

played. These modes are commonly called dark or light modes. There are numerous ways

of implementing translations and theming in Flutter applications. However, both Crayon

applications use a custom solution to solve the theming and translation problem by using

provider.

The Flutter team provided a new solution for translations. This solution automatically

32

class DetailedLectureProvider extends ChangeNotifier {

/// Initial state of the Provider

NotifierState _state = NotifierState.initial;

NotifierState get state => _state;

/// Function which allows to change the state of the provider.

void _setState(NotifierState state) {

_state = state;

notifyListeners();

}

late Lecture? _lecture;

Lecture? get lecture => _lecture;

void _setLecture(Lecture? lecture) {

_lecture = lecture;

}

/// Function which allows to retrieve a specific Lecture

/// from Firebase

void getLecture(String lectureId) async {

/// Change the Provider state to loading

_setState(NotifierState.loading);

/// Retrieve data from Firebase

Lecture lectureFromFirebase = LectureService.getLecture(lectureId)

/// Set the lecture

_setLecutre(lectureFromFirebase);

/// Change the provider state to loaded

_setState(NotifierState.loaded);

}

}

Listing 8: Provider implementation for data retrieval

33

@override

void initState() {

super.initState();

WidgetsBinding.instance!.addPostFrameCallback((_) =>

Provider.of<DetailedLectureProvider>(context, listen: false)

.getLecture(widget.lecture.id));

}

@override

Widget build(BuildContext context) {

return Consumer<DetailedLectureProvider>(

builder: (_, lectureNotifier, __) {

if (lectureNotifier.state == NotifierState.initial) {

return Container();

} else if (lectureNotifier.state == NotifierState.loading) {

return const Center(child: CircularProgressIndicator());

} else {

return LecutreWidget(lecture:lectureNotifier.lecture)

}

},

);

}

Listing 9: Accessing the advanced Lecture provider

34

generates getter functions from arb files that contain the translations. Arb stands for Appli-

cation Resource Bundle and is a JSON file on steroids specifically developed for localization.

The arb files use key-value coding as a mechanism. In other words, the key is used to ac-

cess the actual value. Flutter generates these getter methods to access the translation values

based on the keys of the translation. The new method’s benefit is that the Flutter framework

prevents accessing translation values that do not exist or are null. However, the new method

prevents using search by keyword. Thus, enumerations like Monday or Thursday can not be

translated dynamically in the case of days. One specific example is making a get request

on Firestore, which returns a day like Monday. In such a case, the developer must have if

and else if statements to translate the specific Monday value. For weekdays, this results in 7

else if statements and 12 else if statements for months, which makes it a lot of code for only

translating dates.

Therefore, both Crayon applications use a custom solution to resolve this issue. The first

step is to create different JSON files for each language the application requires to support.

Afterwards, the developer is required to make a class that allows retrieving the translated

files, which can be seen in 10. The load function describes the process of importing the

required file depending on the currently selected language by the user. In addition, this

class also describes the supported languages of the application. Here, the custom locale is a

custom class that inherits from local to override the compare to operator. This allows only

to consider the language code and not the country code. This class also contains the required

translation method by key.

35

class AppLocalizations {

/// Locale describes the which language is currently selected

final Locale appLocale;

/// Specifies which languages are available

static final List<CustomLocale> languages = [

CustomLocale(languageCode: "en"),

CustomLocale(languageCode: "fr"),

CustomLocale(languageCode: "de"),

];

Map<String, String>? _localizedStrings;

AppLocalizations({required this.appLocale});

static AppLocalizations? of(BuildContext context) {

return Localizations.of<AppLocalizations>(context, AppLocalizations);

}

/// Load translated json file

Future<bool> load() async {

// Load JSON file from the "language" folder

String jsonString = await rootBundle

.loadString("assets/language/\${appLocale.languageCode}.json");

Map<String, dynamic> jsonLanguageMap = json.decode(jsonString);

_localizedStrings = jsonLanguageMap.map((key, value) {

return MapEntry(key, value.toString());

});

return true;

}

// Translation by key

String? translate(String jsonkey) {

return _localizedStrings![jsonkey];

}

}

Listing 10: Translation class file loader and search by key

36

The custom translation implementation can not be used directly due to the MaterialApp

widget. The MaterialApp widget requires a Localisation Delegate to manage the translations.

Therefore, a custom delegate class was crafted, which can be seen in 11. The AppLocaliza-

tions Delegate is used as a wrapper for the MaterialApp widget for managing the access for

translated texts. The class extends the default LocalizationsDelegate and overrides two spe-

cific functions. One of them is the isSupported function which specifies which languages are

supported by accessing the custom translation class from 10. In addition, the load function

uses the custom translation class for loading the respective file depending on the current

language of the application. Afterwards, the AppLoalization delegate can be added to the

MaterialApp widget as a parameter to complete the custom translation process.

class AppLocalizationsDelegate extends LocalizationsDelegate<AppLocalizations> {

const AppLocalizationsDelegate();

@override

bool isSupported(Locale locale) =>

AppLocalizations.languages.contains(locale);

@override

Future<AppLocalizations> load(Locale locale) async {

AppLocalizations localizations = AppLocalizations(appLocale: locale);

await localizations.load();

return localizations;

}

}

Listing 11: Custom App Localisation Delegate

The solution is not perfect as it currently stands since there are no checks if the translated

values exist. To resolve this problem, the creation of a custom text widget is required, as seen

in 12. The additional key feature to the custom text widget is the safety text. The safety

text is a required parameter that is displayed in case the translation is missing. This solution

has two significant benefits. It lets other developers know which texts are displayed without

requiring them to check what translation comes out with the respective key in the JSON

files, and there will never be access to a null value. Moreover, adding another translation

now to the crayon apps only requires adding a JSON file with the respective translations and

adding a custom locale to the languages array in 10.

Switching from dark theme to light theme in Flutter can be done by creating two Theme-

37

class CustomText extends StatelessWidget {

/// Textcode for translation.

final String? textCode;

/// If the textCode is null or the transaltion of the text code is null

/// the saftytext will be used.

final String safetyText;

const CustomText(

{Key? key,

this.textCode,

required this.safetyText,

}) : super(key: key);

@override

Widget build(BuildContext context) {

var appTranslation = AppLocalizations.of(context);

String? text;

if (textCode == null) {

text = safetyText;

} else {

text = appTranslation!.translate(textCode as String);

}

return Text(text ?? safetyText);

}

}

Listing 12: Custom text widget

38

Data variables inside the theme provider. One variable is for the dark theme, and the other

is for the light theme. Theme Data has multiple parameters that specify the text colour font

family, the application’s colour theme, and more. The code snipped 13 shows the creation

of such a theme. This allows streamlining the application theme to look for each individual

text the same. In addition, it will enable fast changes in the design of the application since

every widget is directly connected to the theme.

ThemeData light = ThemeData(

fontFamily: "Poppins",

primaryColor: Colors.orange,

scaffoldBackgroundColor: Colors.white,

textTheme: const TextTheme(

headline1: TextStyle(

fontFamily: "Poppins",

fontSize: 42,

fontWeight: FontWeight.bold,

color: Colors.black),

bodyText1: TextStyle(

fontFamily: "Poppins",

fontSize: 18,

fontWeight: FontWeight.w400,

color: Colors.black),

));

Listing 13: Theme setup

Accessing the provider as in 14 [1] allows rebuilding the whole application as soon as the

theme changes. In addition, the MaterialApp widget requires to specify the available theme

and put which theme is currently active 14 [2]. Finally, a function is necessary to change

the theme inside the theme provider. In addition, it is preferred to store the preferred theme

of the user in the shared preferences. By storing and retrieving the data from the shared

preferences, the user is not required to specify the theme for every launch of the application

15.

39

@override

Widget build(BuildContext context) {

[1] final themeProvider = Provider.of<ThemeProvider>(context, listen: true);

final localeProvider = Provider.of<LocaleProvider>(context, listen: true);

return MaterialApp(

title: "Crayon",

[2] themeMode: themeProvider.mode,

[2] theme: themeProvider.light,

[2] darkTheme: themeProvider.dark,

onGenerateRoute: route.controller,

initialRoute: route.splash,

locale: localeProvider.getLocal,

localizationsDelegates: const [

AppLocalizationsDelegate(),

GlobalMaterialLocalizations.delegate,

GlobalWidgetsLocalizations.delegate,

],

supportedLocales: AppLocalizations.languages,

);

}

Listing 14: Provider access

40

void main() async {

SharedPreferences prefs = await SharedPreferences.getInstance();

runApp(MultiProvider(

providers: [

ChangeNotifierProvider<ThemeProvider>(

create: (_) =>

ThemeProvider(isDarkMode: prefs.getBool("themeDark") ?? false)),

ChangeNotifierProvider<LocaleProvider>(

create: (_) => LocaleProvider(prefs.getString("language"))),

],

child: const MyApp(),

));

}

Listing 15: Shared preference access

4.4 Exception & Validation handling

An exception in information technology is an ”exceptional event” during a program’s exe-

cution. Depending on the gravity of the exception, the application might crash. A study

conducted by Compuware [1] states that users do not tolerate application crashes and would

uninstall the application if a crash occurs. Therefore a proper exception handling solution is

required to avoid uninstalls and increase the user satisfaction of the crayon applications.

Exceptions from an application can be prevented by sanitising user inputs. This means

it is required to check if input fields contain the correct information. One primary example

for input validation is for email form fields. These input fields require an email validation

process. The validation process checks if the email contains an ”@”. If the user forgets to

add the ”@” symbol, the user should be notified that the given email is invalid. This process

prevents an unnecessary request to Firestore, and an error will be thrown from firebase, which

states that the email is not valid.

Flutter provides a built-in solution for sanitising user input which can be performed with

the Form widget. In code snipped 16 is a custom implementation and is closely related to the

default Form widget provided by Flutter. The custom form widget contains already a text

field widget which allows keeping the same design over the whole application. This solution

enables higher maintainability if the error requires to be displayed differently. The developer

must only change it in one file instead of each input field individually. The validator is a

vital function that returns an empty string if the string is valid or returns a string that de-

41

scribes the error. The errors have to be specified by the developer. For example, a non-valid

string can be a password with less than eight characters. For grouping purposes and consis-

tency, the different validator functions are grouped into a single class called ValidatorService.

This allows the re-usability of other validator functions. Using such a validator prevents

unnecessary requests to Firestore.

On the other hand, the applications require an active internet connection to work. This

means the application must notify the user if he has a working internet connection. The

management system does not have the connectivity feature since the web browser will auto-

matically display a respective error screen that there is no internet connection available.

However, smartphone applications do not have this default error handling of a non-active

internet connection. Therefore, the student application uses a stream provider that displays a

respective icon if there is no internet connection. The stream provider allows the application

to listen to the connectivity of the smartphone device continuously. The implementation

of the connection provider can be seen in 17. The provider’s constructor instantiates the

connectivity stream and adds it to the stream controller. The Connectivity feature is not

by default available in Flutter and requires to be added to the packages. The connectivity

package allows checking if an internet connection is available. The function getStatusFrom-

Result is not a necessary function, but it will enable to not be dependent on the Connectivity

states. If the connectivity state name changes in the package based on an update, it would

require the developer to change it in every file the connectivity package is used. However, the

improved solution requires only changing it in the ConnectionProvider class. Since the Con-

nectionProvider requires access over the whole application, the provider must be registered

at the initialisation phase of the application. Accessing stream providers data can be done

the same way as a typical provider. Moreover, creating a widget for network sensitivity is

required to prevent loading data without an active internet connection. The implementation

of a network sensitivity widget wrapper can be seen in 18. This widget decides based on the

internet connection which widget to return. The child widget parameter is the widget that

requires loading data from Firestore. If there is no active internet connection, no internet

widget will be displayed to the user instead of the widget that requires an active internet

connection. The Network sensitivity widget was not wrapped on every widget required to

have an internet connection. The reason for this is that the built-in Firestore API pro-

vides a solution to retrieve data from the cache automatically. If the user does not have a

proper internet connection, the user can still see which courses he is enrolled in. If the room

changes, the user will not see this change, but at least the user gets some information from

the application, even if it is not the most actual data.

42

class CustomTextFormField extends StatelessWidget {

/// Validator function which is used by the form widget

/// to check if a string is valid

/// (returns null if string is valid).

final String? Function(String?)? validator;

final String? labelCode;

final String labelSafety;

const CustomTextFormField(

{required this.validator,

required this.labelSafety,

this.labelCode,

Key? key})

: super(key: key);

@override

Widget build(BuildContext context) {

var appTranslation = AppLocalizations.of(context);

String labelText = "";

if (labelCode != null) {

labelText = appTranslation!.translate(labelCode as String)

?? labelSafety;

} else {

labelText = labelSafety;

}

return Form(

autovalidateMode: AutovalidateMode.onUserInteraction,

child: TextFormField(

validator: validator,

style: Theme.of(context).textTheme.bodyText1,

decoration: InputDecoration(

border: const UnderlineInputBorder(),

labelText: labelText),

),

);

}

}

Listing 16: Custom Textformfield widget

43

class ConnectionProvider {

StreamController<ConnectivityStatus> connectionStatusController =

StreamController<ConnectivityStatus>();

ConnectionProvider() {

Connectivity().onConnectivityChanged.listen((ConnectivityResult result) {

// Convert result into Custom enum

var connectionStatus = _getStatusFromResult(result);

// Broadcast value

connectionStatusController.add(connectionStatus);

});

}

ConnectivityStatus _getStatusFromResult(ConnectivityResult result) {

switch (result) {

case ConnectivityResult.mobile:

return ConnectivityStatus.cellular;

case ConnectivityResult.wifi:

return ConnectivityStatus.wifi;

case ConnectivityResult.none:

return ConnectivityStatus.offline;

default:

return ConnectivityStatus.offline;

}

}

}

Listing 17: Connection Provider

44

class NetworkSensitive extends StatelessWidget {

final Widget child;

const NetworkSensitive({Key? key, required this.child}) : super(key: key);

@override

Widget build(BuildContext context) {

var connectionStatus = Provider.of<ConnectivityStatus>(context);

if (connectionStatus == ConnectivityStatus.wifi) {

return child;

} else if (connectionStatus == ConnectivityStatus.cellular) {

return child;

} else {

return const NoInternet();

}

}

}

Listing 18: Network sensitive widget

Exceptions can also be thrown if an application makes an operation on the back-end.

These exceptions can occur if Firestore is not available due to technical issues from Google

or if the user bypasses the different checking mechanisms in the applications. To handle these

errors, the standard is to handle these errors by throwing these early and catching them late.

Another critical factor is not using exceptions as a form of flow control. According to a

study from the Georgia Institute of Technology [11], states that some developers adopted the

ignore-for now approach on the topic of exception handling. This means the developers think

that exception handling is not a significant task in developing an application. However, the

Crayon applications use a technique that requires the developer to handle these exceptions

and is enforced by the compiler. In other words, if the developer decides to ignore the

handling of an exception, the program will not run.

First of all, the dart programming language allows throwing objects without the need of

extending another expectation which is relatively common in other programming languages.

The code snipped 19 shows how simple the custom failure class implementation looks like.

The variable code is used as a key-value for translating the error.

The code in 20 shows a deletion request to Firestore of a lecture. As most programming

languages try and catch blocks, wrap the deletion request, and throw an exception provided

by Dart, the Failure object is thrown with the respective error code. The magic for forcing

45

the developer to handle this exception is in the respective provider, which calls the function

to request an operation in Firestore. The concrete implementation of this process is provided

in 21. The dartz is a feature that is not directly provided in the Flutter framework and must

be added. The dartz package allows adding functional programming into Dart. Functional

programming is well known for its terseness and relatability. This package introduces types

like Either and Task, which makes handling asynchronous errors easier. An operation on a

database can either be a success or a failure. The Either type from dartz allows precisely

this; it will enable a variable of type either to be a failure or a success, the return type of

the API request. This means that in case of an exception on an operation on the Firestore

database, the variable becomes a failure. In case of success, it becomes the returning type of

the function performing the operation on the database. Afterwards, to access either type, the

developer must fold the value. This means he is required to manage both outcomes. In case

of a successful operation, both applications use SnackBars to display the operation’s success.

The Crayon student application shows SnackBars in case of database failures, and the crayon

management application displays the texts due to the bigger screen size. A snack bar in

applications is a bar that appears at the bottom of the screen, which shows a message for a

given amount of time defined by the developer. This approach ensures the maintainability

and the survivability of the application during errors by introducing the compiler as a helping

factor to the developer to not forget to handle exceptions.

/// Failure is used as an exception.

class Failure {

final String code;

Failure({required this.code});

@override

String toString() => code;

}

Listing 19: Failure as an exception

46

/// returns a boolean if the deletion was successful.

/// Throws a Failure in case of an managed error.

Future<void> removeLecture(String lectureId) async {

try {

if (_auth.currentUser != null) {

return FirebaseFirestore.instance

.collection("users")

.doc(_auth.currentUser!.uid)

.update({

"enrolled-lectures": FieldValue.arrayRemove([lectureId])

});

}

throw Failure(code: "not-logged-in");

} on FirebaseException catch (e) {

if (e.code == "network-request-failed") {

throw Failure(code: "no-internet");

}

throw Failure(code: "firebase-exception");

} on SocketException {

throw Failure(code: "no-internet");

} on HttpException {

throw Failure(code: "not-found");

} on FormatException {

throw Failure(code: "bad-format");

}

}

Listing 20: Deletion request to Firestore of a Lecture

47

void removeLecture(String lectureId) async {

/// Change visual my showing loading indicator.

setState(NotifierState.loading);

var result = await dartz.Task(() => api.removeLecture(lectureId))

.attempt()

.map(

(either) => either.leftMap((obj) {

try {

return obj as Failure;

} catch (e) {

throw obj;

}

}),

)

.run();

result.fold(

(failure) => CustomSnackbar(

text: failure.code,

isError: true,

context: context,

saftyString: "Failed to remove lecture",

).showSnackBar(), (_) {

CustomSnackbar(

text: "lecture-removed-sucess",

isError: false,

context: context,

saftyString: "Successfully removed lecture",

).showSnackBar();

_user!.enrolledLectures.remove(lectureId);

});

/// Change state to loaded

setState(NotifierState.loaded);

}

Listing 21: Deletion of a Lecture inside the Provider

48

5 Results

The following subsections describe how the final applications look and what their different

functionalities are. In addition, it contains my personal opinion about developing applications

in Flutter.

5.1 Crayon student

Initially, a splash screen is shown to the user when the application starts. The objective of

such a screen is to hide the loading process of opening an application. In native development,

only one splash screen requires to be provided. However, Flutter requires two such screens.

This is due to the initial loading of the app as in native and one for the Flutter engine at the

start. In addition, the application requires a login screen. The user can change the language

and switch the app into light or dark mode at this screen level. Both screens can be seen in

10.

Figure 10: Splash and Login Screen

Figure 11 shows the dashboard and has following functionalities:

• Join/Delete a lecture

• Navigation

• Settings

49

• Join quiz

• Ask question

Joining a lecture can be done over the QR-code button. This button allows to open the

camera mode and requires the student to scan the lecture QR-code. As soon as the user

joins a lecture, he can also remove it. To remove a lecture, the user requires to long click

the lecture. The navigation was specially designed for this applications. The navigation is

subdivided by the days of the week. The navigation can be seen as a day filter. At the start

of the application, the navigation directly goes to the current day to see which lectures a

student has for that day. Joining a quiz can only be achieved if the management application

allows it. By pressing on the lecture, the user can ask a question to the teacher. The settings

icon allows opening the settings menu, which helps to change the language and theme mode.

Figure 11: Dashboard

The screens in 12 show the quiz process of the crayon student application. The First

screen shows how a question is displayed and how much time remains for the current quiz.

The application will automatically transition to the new question when the student clicks on

a response. During this transition, the user gets notified if the answer is right or wrong. As

soon as all the questions are completed, a final score will be displayed 12. As mentioned in

the implementation chapter, only one request is made to Firestore. Moreover, the video 2

2Question asking process in video format https://github.com/SchroederLionel/CrayonVideos/blob/

main/2022-02-08%2016-58-51.mp4.

50

https://github.com/SchroederLionel/CrayonVideos/blob/main/2022-02-08%2016-58-51.mp4
https://github.com/SchroederLionel/CrayonVideos/blob/main/2022-02-08%2016-58-51.mp4

describes visually how a student can ask a question and how the management system notifies

the teacher that a question was asked by a student.

Figure 12: Quiz screens

5.2 Crayon management

The Crayon management application is currently a web page but can also be compiled into

an executable. As in the student application, the management application also has a login

as shown in 13. In addition, the dashboard shows which lectures the teacher has created

13. The dashboard also has the functionality to change the language and theme mode. The

presentation mode of the application is shown in 14.The presentation screen is also in charge

of handling the questions requested from a student. The yellow icon in the bottom left

describes that a student has asked one question. This icon shows up in real-time soon as a

student asks a question. The presentation screen can also work as a drawing board. The

drawing board can display the current PDF page and draw over it for further explanation.

51

Figure 13: Login & Dashboard

Figure 14: Presentation & Drawing mode

Moreover, the teacher can also start a quiz. Starting a quiz is a multiple-step process

where no step can be omitted and is shown in illustration ??. These steps are the following

and are taken from the sequence diagram 4:

• Select quiz

• Set time for the quiz

• Lobby

• Timer

• Results

• Explanation

The first step is to select the quiz that the teacher wants to start. The time step describes

how long a quiz should take. As soon as this time is over, the students will be kicked out

of the quiz, and their answers will be automatically sent to Firestore. The third step is the

52

lobby step. The management application creates a lobby for the students/ quiz participants

and notifies the student’s application that a quiz has started. The lobby step also shows

which students joined the quiz. As soon as the teacher decides that the quiz should start, the

quiz participants will be placed into the quiz mod as shown in 12. The timer step is a simple

countdown of the selected time. The teacher can early close the quiz or requires to wait

until the timer is over to show the scoring board at the result step. The scoring board shows

the five best players of the quiz. Finally, the teacher can explain the quiz. The explanation

process also shows how many quiz participants answered the questions right or wrong. The

video 3 shows an exmaple execution of a quiz with both applications.

Figure 15: Start quiz

5.3 Future Work

Increasing the features in both applications is necessary to have an advantage against other

competitors. One significant addition to the Crayon management application is implementing

a new PDF storage system. This System should allow the teacher to add his drawing to the

current PDF. At the current state of the application, this is not possible the drawing will

be discarded except if the teacher makes a screenshot and adds it manually to the PDF. In

addition, the teacher should be able to create home works in the management application.

The homework task can easily be added to both applications. The Student application

already filters by the date due to the navigation, which allows displaying the different home

works without adding much code.

3Quiz process in video format https://github.com/SchroederLionel/CrayonVideos/blob/main/

Quiz Process.mp4.

53

https://github.com/SchroederLionel/CrayonVideos/blob/main/Quiz_Process.mp4
https://github.com/SchroederLionel/CrayonVideos/blob/main/Quiz_Process.mp4

6 Conclusion

Education is a key to the success of an individual. Improving the education process with

game mechanics enhances the willingness of a student to listen to a lecture. These game

mechanics are commonly known as quizzes. In addition, allowing a student to ask a question

anonymously might take away the fear of asking a question during a lecture.

The teachers use the Crayon management application and create the different quizzes for

a lecture and send them to the student’s application. In addition, the application has an

integrated presentation system that is also in charge of displaying the anonymously asked

questions by students. The Crayon student applications consume the data from the man-

agement application. This includes the lecture content and quiz data to participate in the

different quizzes a teacher wants to start.

Flutter and Firebase provide a great solution to decrease the development time of an

application for multiple platforms. Flutter is a dynamic language currently which gets many

updates. During the project development, the Flutter team provided three new Flutter ver-

sions. This means that Flutter code can faster deprecate than other programming languages.

These dynamics require the developer to decide which external packages the applications re-

quire. Packages can be based on old dart code instead of the new one. One prominent case of

drastic code base changes was the introduction of the Null Safety feature in Flutter in March

2021. These significant changes made old packages unusable, except the developer disabled

this feature. However, the Null Safety Feature was a great addition to Flutter to remove

the standard errors of accessing null values. In addition, the developer has to consider not

using packages for a specific platform. These packages would eliminate the ability to create

applications for multiple platforms.

On the other side, Firebase is a complete and fully functional product. Removing the

requirement of writing a back-end is an excellent addition that speeds up developing an

application. Using Firestore as a database system requires a proper data modelling procedure.

Firebase charges the user per document operation and not by bandwidth or storage. Taking

this to our advantage by creating redundancy in the different Documents allows reducing

the costs of Firestore. Using Firestore as a back-end can not be installed on hardware other

than Google’s, thus making the applications dependent on Google services. However, an

additional benefit is the scalability of Firestore.

Developing complex Flutter applications such as the Crayon applications requires a proper

state management solution. State management allows rebuilding only the necessary widgets

instead of the whole screen to increase their performance. Moreover, Flutter application

requires an adequate architecture to not mismatch the logic in the application view. This

separation of concerns allows increasing the maintainability of the application.

54

References

[1] Compuware. Users have low tolerance for buggy apps.

https://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-

apps-only-16-will-try-a-failing-app-more-than-twice/?guccounter=1, 2013.

[2] Mehmet Akif Ersoy. The effects of pre-lecture online quizzes on language students’

perceived preparation and academic performance. Jan 2017.

[3] Google. Dart overview. https://dart.dev/overview, Oct 2018.

[4] Google. Using packages.

https://docs.flutter.dev/development/packages-and-plugins/using-packages,

Dec 2020.

[5] Google. Dart overview.

https://dart.dev/null-safety/understanding-null-safety#:~:text=For%20us%

2C%20in%20the%20context,some%20runtime%20checks%20involved%20too., Mar

2021.

[6] Google. Support different platform versions. https:

//developer.android.com/training/basics/supporting-devices/platforms,

2021.

[7] HYPR. New password. https://blog.hypr.com/hypr-password-study-findings,

Oct 2019.

[8] GSMA intelligence. More than 5 billion people in the world own mobile devices.

https://leftronic.com/blog/smartphone-usage-statistics/#:~:text=

According%20to%20GSMA%20real%2Dtime,35.13%25%20of%20the%20world%27s%

20population., Feb 2021.

[9] Henry Roediger, Adam Putnam, and Megan Sumeracki. Ten Benefits of Testing and

Their Applications to Educational Practice, volume 55, pages 1–36. Jan 2011.

[10] Perry Samson. Can giving students anonymity help them engage in class?

https://www.insidehighered.com/digital-learning/article/2019/12/06/

students-may-benefit-anonymous-back-channel-communications, Juin 2019.

[11] Hina Shah, Carsten Görg, and Mary Harrold. Why do developers neglect exception

handling? pages 62–68, 01 2008.

55

https://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-only-16-will-try-a-failing-app-more-than-twice/?guccounter=1
https://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-only-16-will-try-a-failing-app-more-than-twice/?guccounter=1
https://dart.dev/overview
https://docs.flutter.dev/development/packages-and-plugins/using-packages
https://dart.dev/null-safety/understanding-null-safety#:~:text=For%20us%2C%20in%20the%20context,some%20runtime%20checks%20involved%20too.
https://dart.dev/null-safety/understanding-null-safety#:~:text=For%20us%2C%20in%20the%20context,some%20runtime%20checks%20involved%20too.
https://developer.android.com/training/basics/supporting-devices/platforms
https://developer.android.com/training/basics/supporting-devices/platforms
https://blog.hypr.com/hypr-password-study-findings
https://leftronic.com/blog/smartphone-usage-statistics/#:~:text=According%20to%20GSMA%20real%2Dtime,35.13%25%20of%20the%20world%27s%20population.
https://leftronic.com/blog/smartphone-usage-statistics/#:~:text=According%20to%20GSMA%20real%2Dtime,35.13%25%20of%20the%20world%27s%20population.
https://leftronic.com/blog/smartphone-usage-statistics/#:~:text=According%20to%20GSMA%20real%2Dtime,35.13%25%20of%20the%20world%27s%20population.
https://www.insidehighered.com/digital-learning/article/2019/12/06/students-may-benefit-anonymous-back-channel-communications
https://www.insidehighered.com/digital-learning/article/2019/12/06/students-may-benefit-anonymous-back-channel-communications

[12] Statcounter. Mobile android version market share worldwide. https:

//gs.statcounter.com/android-version-market-share/mobile/worldwide/, 2021.

[13] Statcounter. Mobile operating system market share germany.

https://gs.statcounter.com/os-market-share/mobile/germany, Dec 2021.

[14] Statista. Most used programming languages among developers worldwide.

https://www.statista.com/statistics/793628/worldwide-developer-survey-

most-used-languages/, 2021.

[15] EUROPEAN DATA PROTECTION SUPERVISOR. Data minimization.

https://edps.europa.eu/data-protection/data-protection/glossary/d en, Oct

2018.

56

https://gs.statcounter.com/android-version-market-share/mobile/worldwide/
https://gs.statcounter.com/android-version-market-share/mobile/worldwide/
https://gs.statcounter.com/os-market-share/mobile/germany
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://edps.europa.eu/data-protection/data-protection/glossary/d_en

	Introduction
	Motivations
	Objectives and Contributions

	Basics
	Dart
	Flutter
	Environment

	Preliminary Analysis
	Mockup & Requirements
	Data Modeling by Cost reduction
	Code Architecture
	State management

	Implementation
	Packages & Folder Structure
	Advanced Provider implementation
	Theming & Translation
	Exception & Validation handling

	Results
	Crayon student
	Crayon management
	Future Work

	Conclusion

